TRENDS IN THE HIGH-TEMPERATURE HEAT CAPACITIES OF TERNARY CHALCOPYRITE SEMICONDUCTORS

G. Kühn, H. Neumann and E. Nowak

SEKTION CHEMIE UND SEKTION PHYSIK DER KARL MARX UNIVERSITÄT, LEIPZIG, G.D.R.

The anharmonic contribution to the heat capacity of any chalcopyrite semiconductor $A^I B^{III} C_2^{VI}$ or $A^{II} B^{IV} C_2^{V}$ is evaluated. It is shown that the degree of lattice anharmonicity decreases with increasing atomic weight of the constituent atoms of the compounds, and there is no essential difference in the degree of lattice anharmonicity of the two groups of compounds. Except for CdGeAs₂, the trend in the Grüneisen constants is the same.

In studies of the thermal expansion behaviour of the ternary compounds $A^{I}B^{III}C_{2}^{VI}$ ($A^{I} = Cu, Ag; B^{III} = Al, Ga, In; C^{VI} = S, Se, Te$), it has been established that the thermal expansion coefficients remain temperaturedependent up to the highest temperatures investigated ([1-3]) and references cited therein). In terms of the perturbation theory, this means that higherorder anharmonic contributions to the interatomic forces play an important role in establishing the thermal properties of these compounds. In the $A^{II}B^{IV}C_2^V$ compounds $(A^{II} = Zn, Cd; B^{IV} = Si, Ge, Sn; C^V = P, As)$, which also crystallize in the chalcopyrite structure, the situation seems to be different from that in the semiconductors A^IB^{III}C^{VI}₂. In most cases, temperature-independent thermal expansion coefficients have been found at elevated temperatures ([4] and references cited therein), the only exception being CdGeP₂, which exhibits a thermal expansion behaviour like that in the compounds $A^{I}B^{III}C_{2}^{VI}$ [5]. These results suggest the conclusion that lattice anharmonicity effects are generally less pronounced in the compounds $A^{II}B^{IV}C_2^V$ than in the semiconductors $A^{I}B^{III}C_2^{VI}$. It was the aim of the present work to acquire further insight into the lattice anharmonicity effects of these ternary compounds by measuring and analysing their heat capacities at elevated temperatures.

Experimental

The compounds $A^I B^{III} C_2^{VI}$ used in the experiments were prepared by fusion of stoichiometric mixtures of the elements, while the semiconductors $A^{II} B^{IV} C_2^V$ were grown from the vapour phase. X-ray analysis was used to confirm the structures and the lattice parameters of the compounds and to ensure that the materials were single phases. The molar heat capacities at constant pressure C_p were measured in the temperature range T = 300-500 K by using a SETARAM DSC 111 heat flow calorimeter. After careful calibration of the calorimeter using a sapphire single-crystal, the absolute values of C_p could be determined with an accuracy of about ± 1 J/mol[·]deg [6].

Results and discussions

The measured C_p of the A^IB^{III}C₂^{VI} compounds CuInS₂, CuInSe₂ and CuInTe₂ are shown in Fig. 1. We see that the C_p of all these compounds

Fig. 1 Temperature dependence of the heat capacity in CulnS2, CulnSe2 and CulnTe2

198

J. Thermal Anal. 33, 1988

becomes distinctly larger than the upper bound of C_p in the harmonic approximation of C_{ph} $(T \rightarrow \infty) = 12 R = 99.77 \text{ J/mol·deg}$, which can only be explained by lattice anharmonicity effects. In the cases of the A^{II}B^{IV}C₂^V compounds CdSiP₂, CdGeP₂ and CdSnP₂ (Fig. 2), we have the same effect for CdSnP₂. For the other two compounds, we have C_p values of 100 J/mol deg for CdGeP₂ and 98 J/mol·deg for CdSiP₂ at 500 K, but the tendency to a further increase of C_p with increasing temperature is obvious from the C_p data given in Fig. 2. Thus, it is evident that the lattice anharmonicity effects must be taken into account in analyses of the C_p values of all compounds.

Fig. 2 Temperature dependence of the heat capacity in CdSiP₂, CdGeP₂ and CdSnP₂

J. Thermal Anal. 33, 1988

Since the temperature range considered in the present study is well below the melting temperatures of the compounds, it can be assumed that perturbation can be used to describe the contribution ΔC_p to the heat capacity due to lattice anharmonicity [7]. Then, ΔC_p is given by a polynomial in the temperature T, and the total heat capacity of the compounds can be written in the form

$$C_p(T) = 12 \left\{ F(\theta/T) + \sum_{k=1}^{N} c_k T^k \right\}$$
(1)

where θ_D is the Debye temperature and $F(X_D)$ the Debye function describing the temperature-dependence of C_p in the harmonic approximation. However, if the harmonic part of C_p is calculated in this manner, the temperature-dependence of θ_D must be taken into account [8]. Unfortunately, of the compounds investigated, the temperature variation of θ_D has only been reported for CuInS₂ so far [9]. For this reason we tried to analyse our data with relation (1) by setting θ_D equal to the Debye temperature θ_o for the low temperature $T \rightarrow 0$. The polynomial in T will then not give the correct magnitude of the anharmonicity contribution to C_p , but it can be expected that the qualitative trends in the degree of the lattice anharmonicity are described correctly.

Using the θ_o values from [10-12], we fitted relation (1) to the measured heat capacities (Figs 1 and 2) with the parameters N and c_k as adjustable parameters. We found that a value of N = 3 must be used in all cases. The resulting coefficients c_k are given in Table 1. For comparison, the results of the analogous analyses of the C_p data for ZnSiP₂ and ZnSiAs [13], ZnSiAs₂ [14] and CdGeAs₂[15] are also included in Table 1. Within each compound family, the compuonds are arranged with ascending molecular mass m.

The following trends are obvious from Table 1. First, we always have $c_1 < 0, c_2 > 0, c_3 < 0$. Secondly, the absolute magnitudes of the coefficients c_k decrease with increasing molecular mass within each compound family. Thirdly, the order of magnitude of the coefficients c_k is the same in both compound families for compunds with comparable molecular masses. Then, if the absolute magnitudes of the coefficient c_k are considered as a measure of the degree of lattice anharmonicity, we come to the conclusions that

- i) lattice anharmonicity effects become less pronounced with increasing molecular mass m; and
- ii) there is no essential difference in the degrees of lattice anharmonicity of the compounds $A^{I}B^{III}C_{2}^{VI}$ and $A^{II}B^{IV}C_{2}^{V}$.

J. Thermal Anal. 33, 1988

Compound	m	Θ _o , K	$10^{-4} \mathrm{K}^{-1}$	$10^{-6} \mathrm{K}^{-2}$	$10^{-9} \mathrm{K}^{-3}$	γ (300K)
TnSiP ₂	155.40	445	-21.59	10.32	-11.87	1.25
CdSiP,	202.43	390	-15.08	6.33	- 6.51	1.19
CdGeP,	246.93	340	-14.85	6.29	- 6.43	1.09
ZnSiP,	243.30	347	-12.87	5.68	- 5.89	0.96
CdSnP ₂	293.03	280	- 9.85	4.47	- 4.58	0.69
ZnSnAs ₂	333.90	266	- 5.76	3.24	- 3.63	0.59
CdGeAs,	334.83	241	- 3.22	1.56	- 1.34	0.75
CuInS,	242.49	273	- 8.21	4.11	- 4.34	1.05
CuInSe,	336.28	222	- 7.68	4.06	- 4.30	0.79
CulnTe ₂	433.56	191	- 5.38	2.63	- 2.67	0.73

Table 1 Molecular mass m, parameters of relation (1) and Grüneisen constants γ of the compounds investigated

To obtain additional evidence in favour of these suppositions, we have evaluated the volume Grüneisen constants

$$\gamma = \frac{\alpha \cdot V_m B}{C_p} \tag{2}$$

of all compounds by using the volume expansion coefficients α from [16], the bulk moduli *B* from [17, 18] and the C_p data from this study. The resulting values for 300 K are given in Table 1 too. We see that, except for CdGeAs₂, the trend in γ is the same as in the absolute magnitudes of $|c_k|$, which confirms our conclusion.

For CuInS₂, CuInSe₂ and CuInTe₂, we also estimated the anharmonic contribution ΔC_p to the heat capacity for the temperature range from 300 to 500 K. In the case of CuInS₂, the harmonic of C_p was calculated by extrapolating the $\theta_D(T)$ values from [9] to the temperatures above 300 K. For CuInSe₂ and CuInTe₂, the variation of θ_D with T was estimated according to the relations given in [8, 19], by using the interatomic force constants from [20]. The resulting ΔC_p curves are shown in Fig. 3 as a function of the reduced temperature T/θ_{∞} , where θ_{∞} is the Debye temperature in the high-temperature limit $T \rightarrow \infty$ ($\theta_{\infty} = 388$ K for CuInS₂ [9, 19], 275 K for CuInSe₂ and 218 K for CuInTe₂). We see that the onset of ΔC_p shifts to higher reduced temperatures on going from CuInS₂ to CuInSe₂ and CuInTe₂, which means that the degree of lattice anharmonicity decreases in this compound sequence. We note that this trend is again in

Fig. 3 Temperature dependence of the anharmonic contribution ΔC_p to C_p for CuInS₂, CuInSe₂ and CuInTe₂

agreement with that deduced from the c_k values and the Grüneisen constants of Table 1. For the compounds $A^{II}B^{IV}C_2^V$ no estimate of the true $\Delta C_p(T)$ behaviour can be made, because neither constants have yet been reported.

References

- I. V. Bodnar and N. S. Orlova, Phys. Stat. Sol., (a) 91 (1985) 503.
- 2 I. V. Bodnar and N. S. Orlova, Cryst. Res. Technol., 21 (1986) 1091.
- 3 I. V. Bodnar and N. S. Orlova, Izv. Akademi Nauk SSSR, Neorg. Mater., 21 (1986) 1110.
- 4 P. Kistaiah and K. S. Murthy, J. Mater. Sci. Lett., 3 (1984) 764.
- 5 P. Vohl, J. Electron. Mater., 8 (1979) 517.
- H. Neumann, G. Kühn and W. Möller, Cryst. Res. Technol., 20 (1985) 1225.
- 7 H. R. Glyde and M. L. Klein, CRC Crit. Rev. Solid State Sci., 2 (1971) 181.
- 8 T. H. U. Barron, W. T. Berg and J. A. Morrison, Proc. Roy. Soc., A 242 (1957) 478.
- 9 K. J. Bachmann, F. S. L. Hsu, F. A. Tiel and H. M. Kasper, J. Electron. Mater., 6 (1977) 431.
- 10 K. Bohmhammel, P. Deus and H. A. Schneider, Phys. Stat. Sol., (a) 65 (1981) 563.

- K. Bohmhammel, P. Deus, G. Kühn and W. Möller, Phys. Stat. Sol., (a) 71 (1982) 505.
- 12 P. Deus, H. A. Schneider and U. Voland, Cryst. Res. Technol., 16 (1981) 941.
- H. Neumann, W. Möller and G. Kühn, Cryst. Res. Technol., 21 (1986) 919.
- 14 W. Möller, G. Kühn and H. Neumann, Cryst. Res. Technol., 22 (1987) K 18
- 15 W. Möller, G. Kühn and H. Neumann, Cryst. Res. Technol., 22 (1987) 533.
- 16 H. Neumann, Cryst. Res. Technol., 22 (1987) 723.
- H. Neumann, Phys. Stat. Sol., (a) 96 (1981)
 K 12.
- 18 H. Neumann, Cryst. Res. Technol., 23 (1988) Nr. 1.
- 19 P. Deus, V. Frei, O. Bilek and W. Cordts, Phys. Stat. Sol., (b) 112 (1982) 269.
- H. Neumann, Helv. Phys. Acta, 68 (1985) 337.

J. Thermal Anal. 33, 1988

KÜHN ET AL.: HIGH-TEMPERATURE HEAT CAPACITIES

Zusammenfassung – Der anharmonische Beitrag zur Wärmekapazität verschiedener Halbleiterverbindungen A¹B^{III}C^{VI}₂ und A^{II}B^{IV}C^V₂ vom Chalkopyrit-Typ wird bestimmt. Es wird gezeigt, dass die Gitteranharmonizität mit steigender relativer Atommasse der Bestandteile der Verbindungen abnimmt und dass keine wesentlichen Unterschiede in der Gitteranharmonizität beider Gruppen von Verbindungen bestehen. Der Trend der Grüneisen-Konstanten ist der gleiche, ausgenommen bei CdGeAs₂.

РЕЗЮМЕ — Оценен ангармонический вклад в теплоемкость халькопиритных полупроводников $A^{I}B^{III}C_{2}^{VI}$ и $A^{II}B^{IV}C_{2}^{V}$. Показано, что степень решеточной ангармоничности уменьшается с увеличением атомного веса элементов, составляющих данные соединения, и что для обоих групп соединений нет особого различия в степени решеточной ангармоничности. Постоянные Грюнайзена одинаковые для всех соединений, за исключением CdGeAs₂.